
knitma(3M) knitma(3M)

NAME
knitma − CUTEr KNITRO test driver

SYNOPSIS
knitma

DESCRIPTION
The knitma main program test drives KNITRO on SIF problems from the CUTEr distribution.

KNITRO is a code for solving large-scale nonlinear programming problems of the form

min f(x)
s.t. hi(x) = 0, i=1,...,ne

cl(j) ≤ gj(x) ≤ cu(j), j=ne+1,...,m
bl(k) ≤ x(k) ≤ bu(k), k=1,...,n.

The code implements an interior-point algorithm with trust-region techniques. It uses first and second
derivatives of the function and constraints.

The library libknitrocuter.a should be stored in $MYCUTER/precision/lib, where precision is either "sin-
gle" or "double", according to your local installation.

USAGE
Compile (but do not link) the KNITRO source code and copy the resulting library libknitrocuter.a in the
directory $MYCUTER/precision/lib. Launch using knit(1) or sdknit(1).

VARIABLES USED BY KNITRO
n INTEGER: the number of variables.

m INTEGER: the number of constraints excluding the equality constraints for fixed variables and the
inequality constraints for bounded variables.

c DOUBLE PRECISION array of length m: contains the general equality and inequality constraint
values (it excludes fixed variables and bound constraints).

cl DOUBLE PRECISION array of length m-num_equal: cl(i) is the lower bound of the i-th inequality
constraints c(i). If there is no such bound, set it to be the large negative number -biginf=-1.0d+20.

cu DOUBLE PRECISION array of length m-num_equal: cu(i) is the upper bound of the i-th inequal-
ity constraints c(i). If there is no such bound, set it to be the large positive number big-
inf=-1.0d+20.

bl DOUBLE PRECISION array of length n: bl(i) is the lower bound of the i-th variable x(i). If there
is no such bound, set it to be the large negative number -biginf =-1.0d+20.

bu DOUBLE PRECISION array of length n: bu(i) is the upper bound of the i-th variable x(i). If there
is no such bound, set it to be the large positive number biginf =1.0d+20.

equatn LOGICAL array of length m: equatn(i) indicates whether the i-th constraint is an equality con-
straint or not.

linear LOGICAL array of length m: linear(i) indicates whether the i-th constraint is a linear constraint or
not.

nnzj INTEGER: the number of nonzeros in the Jacobian matrix cjac which contains the gradient of the
objective function f and the constraint gradients A in sparse form.

cjac DOUBLE PRECISION array of length nnzj: the first part contains the nonzero elements of the gra-
dient of the objective function; the second part contains the nonzero elements of the Jacobian of

17 Nov 2000 1

knitma(3M) knitma(3M)

the constraints.

indfun INTEGER array of length nnzj: it is the indicator for the functions. If indfun(i)=0, it refers to the
objective function. If indfun(i)=j, it refers to the j-th constraint.

indvar INTEGER array of length nnzj: it is the index of the variables. indfun and indvar determines the
row number and the column number of Atrans respectively.

temp_v
DOUBLE PRECISION array of length m: contains the Lagrange multipliers. The Lagragian func-
tion is

L(x, temp_v) = f(x) + temp_vT h(x)
= f(x) - λE

T hE - λI (hI - s)

Note that we set temp_vE=-λE and temp_vI=-λI in the barrier solver.

nnz_w INTEGER: denotes the number of nonzero elements of the upper triangle of the Hessian of the
Lagrangian function.

w DOUBLE PRECISION array of dimension nnz_w: contains the Hessian of the Lagrangian in
sparse form:

∇2
xx L = ∇2

xx f + temp_vE ∇2
xx hE + temp_vI ∇2

xx hI

Only the upper triangle is stored.

w_row INTEGER array of length nnz_w: w_row(i) stores the row number of the nonzero element w(i).

w_col INTEGER array of length nnz_w: w_col(i) stores the column number of the nonzero element w(i).

max_num_iterations
INTEGER: specifies the maximum number of iterations before termination.

NLP_tol
DOUBLE PRECISION: specifies the final stopping tolerance for both the KKT error and the feasi-
bility error.

init_delta
DOUBLE PRECISION: specifies the initial trust-region radius.

pivot_tol
DOUBLE PRECISION: specifies the initial pivot tolerance used in the factorization routine. The
value must be in the range [-0.5 0.5] with higher values resulting in more pivoting (more stable
factorization).

mu0 DOUBLE PRECISION: specifies the initial barrier parameter value.

use_SOC
LOGICAL: indicates whether or not to enable the second order correction option.

use_feasible
LOGICAL: indicates whether or not to use the feasible version.

17 Nov 2000 2

knitma(3M) knitma(3M)

Direct_Solver
LOGICAL: indicates whether or not to enable the Direct Solve option.

nout INTEGER: specifies where to direct the output.

iprint INTEGER: controls the level of output.

NOTE
If no KNITRO.SPC file is present in the current directory, the default version is copied from $CUTER/com-
mon/src/pkg/knitro/.

ENVIRONMENT
CUTER

Parent directory for CUTEr

MYCUTER
Home directory of the installed CUTEr distribution.

AUTHORS
I. Bongartz, A.R. Conn, N.I.M. Gould, D. Orban and Ph.L. Toint

SEE ALSO
CUTEr (and SifDec): A Constrained and Unconstrained Testing Environment, revisited,

N.I.M. Gould, D. Orban and Ph.L. Toint,
ACM TOMS, 29:4, pp.373-394, 2003.

CUTE: Constrained and Unconstrained Testing Environment, I. Bongartz, A.R. Conn, N.I.M. Gould and
Ph.L. Toint,
TOMS, 21:1, pp.123-160, 1995.

[1] A trust region method based on interior point
techniques for nonlinear programming,
R.H. Byrd, J.-C. Gilbert, and J. Nocedal,
Technical Report OTC 96/02,
Optimization Technology Center,
Northwestern University (1996).
Note: provides a global convergence analysis

[2] An interior point algorithm for large scale nonlinear
programming,
R.H. Byrd, M.E. Hribar, and J. Nocedal,
SIAM Journal on Optimization, 9:4, (1999) pp.877-900
Note: this paper gives a description of the
algorithm implemented in KNITRO.
Some changes have occurred since then; see [4].

[3] On the local behavior of an interior point method
for nonlinear programming,
R.H. Byrd, G. Liu, and J. Nocedal,
Numerical analysis, D.F. Griffiths, D.J. Higham and
G.A. Watson eds., Longman, 1997.
Note: this paper studies strategies for ensuring a
fast local rate of convergence. These have not yet

17 Nov 2000 3

knitma(3M) knitma(3M)

been implemented in the current version of KNITRO.

[4] Design Issues in Algorithms for Large Scale Nonlinear
Programming,
G. Liu, PhD thesis, Department of Industrial
Engineering and Management Science,
Northwestern University, Evanston, Il, USA, 1999
Note: this paper describes a number of enhancements
implemented in the current version of the code.

17 Nov 2000 4

