NAME

CISH - CUTEr tool to evaluate the Hessian of an individual problem function, in sparse format.

By convention, the signs of the Lagrange multipliers V are set so the Lagrangian function can be written as $L(X, V)=f(X)+\langle c(X), V\rangle$.

SYNOPSIS

CALL CISH(N, X, IPROB, NNZH, LH, H, IRNH, ICNH)
DESCRIPTION
The CISH subroutine evaluates the Hessian of a particular constraint function or the objective function for the problem decoded into OUTSDIF.d at the point X , and possibly its gradient in the constrained minimization case. The matrix is stored in sparse format.

ARGUMENTS

The arguments of CISH are as follows
\mathbf{N} [in] - integer
the number of variables for the problem,
\mathbf{X} [in] - real/double precision
an array which gives the current estimate of the solution of the problem,
IPROB [in] - integer
the number of the problem function to be considered. If $\mathrm{IPROB}=0$, the Hessian of the objective function will be evaluated, while if $\operatorname{IPROB}=\mathrm{i}>0$, that of the i -th constraint will be evaluated.

NNZH [out] - integer
the number of nonzeros in H ,
LH [in] - integer
the actual declared dimensions of H , IRNH and ICNH,
\mathbf{H} [out] - real/double precision
an array which gives the values of the Hessian matrix of the Lagrangian function evaluated at X and V. The i-th entry of H gives the value of the nonzero in row IRNH(i) and column ICNH(i). Only the upper triangular part of the Hessian is stored,
IRNH [out] - integer
an array which gives the row indices of the nonzeros of the Hessian matrix of the objective function evaluated at X and V , and

ICNH [out] - integer
an array which gives the column indices of the nonzeros of the Hessian matrix of the objective function evaluated at X and V .

AUTHORS

I. Bongartz, A.R. Conn, N.I.M. Gould, D. Orban and Ph.L. Toint

SEE ALSO

CUTEr (and SifDec): A Constrained and Unconstrained Testing Environment, revisited, N.I.M. Gould, D. Orban and Ph.L. Toint, ACM TOMS, 29:4, pp.373-394, 2003

CUTE: Constrained and Unconstrained Testing Environment, I. Bongartz, A.R. Conn, N.I.M. Gould and Ph.L. Toint, TOMS, 21:1, pp.123-160, 1995.

