NAME

cgdma - CUTEr CG_DESCENT test driver

SYNOPSIS

cgdma

DESCRIPTION

The cgdma main program test drives CG_DESCENT on SIF problems from the CUTEr distribution.

The CG_DESCENT package is a nonlinear congugate-gradient method for large-scale unconstrained minimization designed by William Hager and Hongchao Zhang (U. Florida).

USAGE

The CG_DESCENT file cg_descent.f should be compiled, and the resulting file cg_descent.o placed in (or symbolically linked to) the directory \$MYCUTER/double/bin.

There is no single-precision version.

NOTE

If no CG_DESCENT.SPC file is present in the current directory, the default version is copied from \$CUTER/common/src/pkg/cg_descent/. Default specifications are as follows:

eps	The stopping tolerance
delta	Wolfe line search parameter
sigma	Wolfe line search parameter
epsilon	approximate Wolfe threshold factor
theta	update
gamma	required decay factor in interval
) rho	growth factor in bracket
eta	lower bound for cg's beta_k
psi0	factor used in very initial starting guess
psi1	factor previous step multiplied by in QuadStep
) psi2	factor previous step is multipled by for startup
2 QuadC	utOff lower bound on rel change in f before QuadStep
) restart_	fac restart cg in restart_fac*n iterations
2 maxit_	fac terminate in maxit_fac*n iterations
) feps	stop when value change <= feps*lfl
nexpand	number of grow/shrink allowed in bracket
nsecant	number of secant steps allowed in line search
QuadStep	use initial quad interpolation in line search
PrintLevel	F (no print) T (intermediate results)
PrintFinal	F (no print) T (print error messages, final error)
StopRule	$F (gradl_infty \leq tol) T (\leq tol*(1+ f))$
ERule	$F (eps_k = eps fl) T (eps_k = eps)$
AWolfe	F (Wolfe) T (+approx Wolfe) 2 (epsilon pert)
Step	F (no initial line search guess) T (guess in gnorm)
	eps delta sigma epsilon theta gamma rho eta psi0 psi1 psi2 QuadCi estart_1 feps nexpand nsecant QuadStep PrintLevel PrintFinal StopRule ERule AWolfe

The reader is referred to the paper quoted below and the code itself if he or she wishes to modify these parameters.

ENVIRONMENT

CUTER

Parent directory for CUTEr

MYCUTER

Home directory of the installed CUTEr distribution.

AUTHORS

I. Bongartz, A.R. Conn, N.I.M. Gould, D. Orban and Ph.L. Toint

SEE ALSO

CUTEr (and SifDec): A Constrained and Unconstrained Testing Environment, revisited, N.I.M. Gould, D. Orban and Ph.L. Toint, ACM TOMS, **29**:4, pp.373-394, 2003.

CUTE: Constrained and Unconstrained Testing Environment, I. Bongartz, A.R. Conn, N.I.M. Gould and Ph.L. Toint, ACM TOMS, **21**:1, pp.123-160, 1995.

CG_DESCENT, A conjugate gradient method with guaranteed descent, W. W. Hager and H. Zhang, Department of Mathematics, University of Florida, Gainesville, FL 32611, USA, January, 2004.

sdcgd(1), cgd(1).