NAME

CCFSG - CUTEr tool to evaluate constraint functions values and possibly gradients in sparse format.

SYNOPSIS

CALL CCFSG(N, M, X, LC, C, NNZJ, LCJAC, CJAC, INDVAR, INDFUN, GRAD)

DESCRIPTION

The CCFSG subroutine evaluates the values of the constraint functions of the problem decoded into OUTS-DIF.d at the point X, and possibly their gradients in the constrained minimization case. The gradients are stored in sparse format.

ARGUMENTS

The arguments of CCFSG are as follows

N [in] - integer

the number of variables for the problem,

M [in] - integer

the total number of general constraints,

 \mathbf{X} [in] - real/double precision

an array which gives the current estimate of the solution of the problem,

LC [in] - integer

the actual declared dimension of C, with LC no smaller than M,

C [out] - real/double precision

an array which gives the values of the general constraint functions evaluated at X. The i-th component of C will contain the value of $c_i(x)$,

NNZJ [out] - integer

the number of nonzeros in CJAC,

LCJAC [in] - integer

the actual declared dimensions of CJAC, INDVAR and INDFUN,

CJAC [out] - real/double precision

an array which gives the values of the nonzeros of the general constraint functions evaluated at X. The i-th entry of CJAC gives the value of the derivative with respect to variable INDVAR(i) of constraint function INDFUN(i),

INDVAR [out] - integer

an array whose i-th component is the index of the variable with respect to which CJAC(i) is the derivative,

INDFUN [out] - integer

an array whose i-th component is the index of the problem function of which CJAC(i) is the derivative,

GRAD [in] - logical

a logical variable which should be set .TRUE. if the gradient of the constraint functions are required and .FALSE. otherwise.

AUTHORS

I. Bongartz, A.R. Conn, N.I.M. Gould, D. Orban and Ph.L. Toint

SEE ALSO

CUTEr (and SifDec): A Constrained and Unconstrained Testing Environment, revisited, N.I.M. Gould, D. Orban and Ph.L. Toint, ACM TOMS, **29**:4, pp.373-394, 2003.

CUTE: Constrained and Unconstrained Testing Environment, I. Bongartz, A.R. Conn, N.I.M. Gould and Ph.L. Toint, TOMS, **21**:1, pp.123-160, 1995.